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Abstract-In biomechanics, the adequate mechanical model of cancellous bones, which consist of
beam-microstructures, becomes essential for understanding the cause and development ofarthritis.
Mechanical behavior of a body consisting of microstructures requires an extended continuum
model. The present study shows that the micropolar continuum of the general form is an adequate
analytic model of 3-D periodic beam structures belonging to the single-atom type. This continuum
di1fers from the micropolar continua defined by Eringen due to the presence of high order terms in
the inertia properties. It is also shown that the stress and couple stress defined in this micropolar
continuum model have physical meanings which are related to the microstructure. The low frequency
dynamic characteristics ofcontinuum models are investigated by calculating the natural frequencies
of free vibrations of bodies of beam-structured materials. The results show that the effect of the
high order terms is significant.

INTRODUCTION

This paper is concerned with continuum approaches in the description of the dynamic
behavior of materials consisting of beam-microstructures. This problem has considerable
interest in biomechanics since the adequate mechanical model ofcancellous bones in human
vertebra or in hip and knee joints becomes essential for understanding the cause and
development of lower-back pain and arthritis. Cancellous bones consist of a large number
of microstructures which are beam structures with rigid joints and the size of a micro­
structure in these materials compared with the macrodimension of the bodies is not as small
as those of ordinary materials. Therefore, their behavior sometimes deviates from that of
a classical continuum. The same problem also occurs in the dynamic analysis oflarge space
structures which consists ofa large number offlexible beams and trusses arranged in regular
patterns.

In the early I960s, a brisk activity arose in the area of mechanics of generalized
continua (Kroner (1968); Aero and Kuvshinskii (1961); Toupin (1962); Mindlin (1964);
Palmov (1964); Eringen and Suhubi (1964); the original work was done by Cosserat and
Cosserat (1909)]. They extended the classical theory of elasticity with the intention of
accommodating the effect of microstructures in materials. However, for simple mater­
ials such as metals, no noticeable results due to the non-elassical terms in theory of Cosserat­
type continua were confirmed experimentally (Ellis and Smith, 1967; Perkins and Thomson,
1973; Gauthier and Jahaman, 1975). For fiber-reinforced or laminated composite materials,
it was shown that the effective stiffness theory, which is a Cosserat-type continuum theory,
describes the dispersive phenomena ofpropagating harmonic waves in an infinite medium,
which do not appear in homogeneous classical materials (Herrmann and Achenbach, 1967;
Sun et al., 1968). It has been noted that the increase in the velocity of ultrasonic waves in
human bones is much larger than that in simple viscoelastic solids. Yoon and Katz (1983)
suggested that the additional dispersion can be explained by considering a bone to be a
Cosserat continuum with microstructures.

It was considered early that mechanical behavior of 2-D planar rectangular grids can
be described adequately by Cosserat-type continua, especially by micropolar continua
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(Eringen, 1966). Banks and Sokolowski (1968) demonstrated a close analogy between the
governing equations of the equivalent continuum of a planar rectangular grid obtained
from force equilibrium conditions of a unit element, and that of the couple stress theory
for orthotropic bodies. Askar and Cakmak (1968) considered a 2-D model composed of
lumped particles joined by extensible and flexible massless rods as a model of micropolar
continua, since the governing field equations of the model were similar to those of micro­
polar continua. Bazant and Christensen (1972) showed that a micropolar continuum is
a continuum approximation of a large planar rectangular grid framework under initial axial
forces. Sun and Yang (1973) obtained a continuum model using energy equivalence and
variational principles in their study of the dynamics of planar rectangular gridworks.
Kanatani (1979) obtained dispersion curves of shear waves in planar rectangular grid
frameworks for a wide range of wave numbers from the equations of motion of a complex
valued micropolar continuum model. Noor and Nemeth (1980a, b) developed micropolar
beam models to analyze beamlike lattices with rigid joints. However, in these previous
works, it was not clear whether the continuum models for these materials with beam­
microstructure were always the same as that of Eringen's micropolar continuum theory. In
addition, there is no consistent method for the detennination of material properties of the
continuum model and the effect of these non-classical parameters were not thoroughly
investigated.

In the present study, the problem of defining the adequate continuum model of a 3-D
periodic beam structure in the linear elastic range is investigated systematically using the
crystal lattice concept (McKie and McKie, 1974). A given 3-D periodic beam structure
belongs to either a monatomic or a polyatomic beam structure. It is shown that the adequate
continuum model which describes the static behavior of any monatomic 3-D periodic beam
structure is the same micropolar continuum defined by Eringen. However, the continuum
model of a periodic beam structured material differs from Eringen's micropolar continua
in the expression for the inertia property of the continuum: not only the micro-rotational
inertia tenns but also higher order terms are defined. The material constants can be
calculated systematically from the material properties and geometry of the microstructure.
Stresses and couple stresses defined in this continuum model have definite physical meaning
which can be expressed by discrete forces and moments acting on the unit microstructure.
In the final part of the paper, the influence of high order tenns upon dynamic behavior of
these materials is investigated.

THEORETICAL DEVELOPMENT

A 3-D periodic beam structure is characterized by its spatial periodicity. It can be
constructed by repetitions of a unit structure. The distribution of joints has the unique
spatial periodicity of the beam structure. The beam connections at one joint may be the
same or different from the beam connection at another joint. Assuming that each set of
joints of the same beam connections is each type ofparticle, the 3-D periodic beam structure
can be considered as a crystalline solid consisting of these fictitious particles.

Interactions between these fictitious particles are defined from the structural properties
of beams. A stiffness matrix and a mass matrix of a beam element based on beam theory
approximately represent the structural properties ofa beam. A simple beam element, which
includes the effect of rotatory inertia and shear defonnations, is used in the present study
(Przemieniecki, 1968).

For a general lattice structure with N particles to each cell, each different particle in a
cell can be distinguished by an index k, k = I, ... , N. Choosing anyone cell as a reference
cell, we can label different cells by a triple lattice index L(L I> L 2, L 3)· A particle in a general
lattice is specified by indices Land k. A fictitious particle in a crystal lattice model of a
periodic beam structure has six degrees-of-freedom of motion in 3-~ space. Therefore, a
vector u(L, k), which represents translational and rotational displacements of a joint, has
six components
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u(L,k) =

u(L,k)

v(L,k)
w(L,k)

<pi(L,k)

<P2(L,k)
<p)(L, k)

0)

where, u, v, and ware the components of translation along the X-, Y-, and Z-coordinate
axis, respectively, and <P h <P2' and <p) are the rotation about the X-, Y-, and Z-coordinate,
respectively.

Consider a system of n beams. The strain energy stored in the system of n beams can
be expressed as follows assuming the deformations in the beams are those in the static case :

S.E. = 1/2 {u}[K] {u} (2)

where [K] is the total stiffness matrix of the system and {u} the displacement vector of
joints.

The kinetic energy of the n beams can be expressed as follows:

K.E. = 1/2 {u} [M] {u} (3)

where [M] is the total consistent mass matrix of the sysem and {u} the velocity vector of
joints.

The distribution of translations and rotations of joints can be represented by con­
tinuous functions Uk(X, t), such that

Uk (X, t) = u(L, k) (4)

where x is the position of the joint which is the kth particle in the L(L" L 2, L)) lattice.
For a periodic beam structure of the single-atom type, all joints are equivalent. There­

fore, one continuous vector function u(x, t) is necessary for the description of the dis­
placement of the beam structure. Using the first-order Taylor series expansion of a con­
tinuous vector function u(x, t) about x = Xo as an approximate displacement vector of
neighbor joints of the reference joint 0, the strain energy stored in n beams of the system,
shown in Fig. I and expressed in eqn (2) by discrete variables, can be expressed by a
continuous vector function and its first derivatives as follows:

x
Fig. 1. A pair of beams in a periodic beam structure of the single-atom type.
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S.E.
I

2
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where

= ~ {uor[.f f [kh] {uo} + {uor{ f {± [kJij[(dXk -l-). {uo}]}}
,=0 J-O ,=0 J= I uXk J

+ -2
I ±±{(dxk-l-\uo}}TCk]ij{(dXI :;:,0 ){uo}} (5)

1= I J= I uXkA uXI J

(dXk)j is the kth component vector, (xj-xo), and xj the position vector ofthe jth joint
(j = 0, I, 2, ... , n).

The strain measures of micropolar continua are the asymmetric strain tensor Ckl and
the gradient of rotations Ykh which are defined as follows:

(6)

(7)

where Glkm is the alternating third-order tensor.
Then, the strain energy expression (5), which is a function of translational and

rotational displacements and their first derivatives, reduces to the micropolar strain energy
function W(Gkl, Ykl), as can be seen in the Appendix. W is a sum of a quadratic function of
strain and a quadratic function of the gradient of rotations and no coupling terms appear
for the beam structure of the single-atom type. Therefore, W is represented using only two
fourth-order tensors as follows:

The fourth-order tensors have the following major symmetry :

A klmn =Amnkl

(8)

(9)

In a similar manner, the kinetic energy expression (3) reduces to the kinetic energy
function Y(u j , J;;, oU;/OXj' oJ;;loxj ) where u; (i = 1,2,3) are components of the velOCity
vector and €PI are components of the angular velocity vector (see the Appendix). The kinetic
energy function Y is a quadratic function not only of the velocity and angular velocity of
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a material point, but also of their first gradient. Y is represented in the following general
form:

3 3

Y = L L Oai/uiu/+1bi/¢i¢j+CijUi¢/)
i-I j= I

(10)

ai/ and b i/ are symmetric second-order tensors, and hi/lei andii/lel are fourth-order tensors
with major symmetry (see eqns (9». Furthermore, from the characteristics of the mass
matrix of beam pairs, the following conditions hold in the kinetic energy function Y:

aij = p{)ij

Cij =0

d ijlc =Uijle =0

kijlel =0

(11)

where P is the apparent mass density of the continuum.
In the kinetic energy function of the micropolar continuum considered by Bringen

(1966), only mass density P and the second-order term blj are defined and the higher
order terms do not appear. In the classical continuum theory, mass density p is the only
inertia property of the material. Therefore, the continuum model of the periodic beam­
structured materials will be called the micropolar continuum of the general form.

Take T to be the total kinetic energy of the body and V to be the total potential energy
of deformation of the body at time t. Then, T and V are the volume integrals of Yand W,
respectively

(12)

(13)

where n is the volume of the body.
Let WI be the work done by the external forces and moments of the body. The varia­

tion of WI is given by

(14)

where s is the boundary surface of the body, bl the body force per unit mass, BI the body
couple per unit mass, 1/ the surface traction acting on the boundary surface, and ml the
surface couple moment acting on the boundary surface. Hamilton's principle states that

(15)

where the variation is taken between a fixed initial time to and a final time t ••
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Define the stresses, (jij, and the couple stresses, mij' as follows:

{I 6)

{I 7)

Then, the equations ofmotion and the boundary conditions obtained fromHamiiton's
principle reduce exactly to those of linear micropolar elasticity considered by Eringen
(1966),t except for the difference in the expression of inertia terms of the right-hand side,
as follows:

equations of motion

m+e'k(j'k+B=~ay _~{~(ayla(a~i))}.
JI,J IJ J I at a~i aX

j
at ax

j
'

boundary conditions

T(n) a(:I /:I(au i )). = n·(j··+n· - uY u -
I J Jl J at ax.

J

(18)

(19)

(20)

(21)

where nj is a component of the unit vector outward normal to the boundary surface.
The constitutive equations of the continuum model of a given periodic beam structure

are obtained from eqns (16) and (17), using the strain energy function W. They are exactly
the same as those of micropolar elasticity (Eringen, 1966) and can be expressed as follows:

(22)

(23)

Stresses and the couple stresses in the micropolar continuum model ofa periodic beam
structure defined above have the following physical meanings (Kim, 1984)

(24)

(25)

where V· is the volume of a unit cell, F I
I , F i

2• F/3 the components of a force acting onjoint

t Eringen derived the equations of motion from balance laws. The balance laws included the conservation
ofrnicro-inertia since the micro-motion ofa point particle in the rnicropolar continuum he assumed is completely
independent to the macro-motion of the particle. However, the particles in the continuum model of periodic beam
structure are connected such that the micro-motion is interrelated to the macro-motion by constitutive relations.
Therefore, the momentum and the moment of momentum are balanced as total quantities and the micro-inertia
defined in Eringen's micropolar continuum is not conserved independently in this continuum.
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Fig. 2. A 2-D rectangular beam structure.

Fig. 3. A 2-D triangular beam structure.

Fig. 4. A 3-D simple cubic structure.
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i, Milo M~, M i
3 the component of a moment acting on joint i, and (lui, lul, lui) the

components of the position vector of joint i relative to joint O.
Relations (24) and (25) show that stresses and couple stresses are expressed by forces

and moments acting on joints in the unit cell and are also dependent on the microstructure.

CALCULATION OF MATERIAL CONSTANTS

The computer program MAC (MAterial Constants) was developed to calculate
material constants ofmicropolar continuum models ofperiodic beam structures. All of the
following example beam structures are of the single-atom type and continuum models are
orthotropic micropolar elastic solids.

(a) 2-D rectangular grid (Fig. 2, Lx = 1.6 mm, Ly = 1.2 mm) ;
(b) 2-D triangular grid (Fig. 3);
(c) 3-D simple cubic structure (Fig. 4).

The material properties of a unit beam member used are those of human compact
bone and have the following values:

Young's modulus, E = 15.0 GPa

SAS 23:11-8

Poisson's ratio,

mass density,

v = 0.3

p = 1.8 g cm- 3•

(26)
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A unit beam member has the geometric values which are typical values of human
cancellous bones. Assuming the cross section of a beam is a circle, the shear coefficient k
is taken as 0.886 in the calculation (Cowper, 1966). The thickness of the 2-D bodies is
assumed to be the unit thickness

cross-sectional area, A = 0.0078 mm 2

second moment of inertia of the cross-section, 1= 4.91 x 1O~6mm4 (27)

length, L = 1.6mm.

The micropolar continuum models of periodic beam structures obtained above have
two kinds of material constants: one group is classical material constants (A jik" p) and the
other group is non-classical material constants (Bjik" etc.). The material constants obtained
are represented in Tables 1-3. The effect of non-classical terms can be estimated using the
following characteristic lengths:

characteristic length of geometry

L = the length of a unit beam in a microstructure;

characteristic length of stiffness

characteristic lengths of inertia

Lb = .j(b33 /p)

Lh = .j(h2121 /p).

These characteristic lengths are compared in Table 4. Since Ls < L for the example

Table I. Material constants of a micropolar
elastic solid 2-D rectangular grid

Stiffness Unit

A IIII 97.500
A 2222 73.125
A 1122. A I221 0.0 MPa
A 2121 0.378
A I212 0.285

B lill 0.2439 MPamm2

B J232 0.1820

Inertia

p 20.48 IO- l gcm- l

bll 0.2054

el!2= -e2ll 2.496
e!2l = -eJ21 1.053

f213 = -fll2 0.643
fJ21 = -fm 0.272 10- 6 g rom-I

h 1111 9.984
h 2222 4.212
h 1122 0.0
h2121 11.134
h l212 4.700

hili 0.733 10- 6 g mm
i32l2 0.174
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Table 2. Material constants of a micropolar
elastic solid 2-D triangular grid

Stiffness Unit

AIIII> Ann 95.085
A 1122. A 1221 31.512 MPa
A 212 1> A I212 31.942

B JIJI 0.3168 MPamm2

BJ2J2 0.3168

Inertia

p 30.40 IO- J gcm- J

bJJ 0.3144

eJI2 = -e21J 3.242
el2J = -eJ21 3.242

121J = -/JI2 0.836 1O- 6gmm- 1

IJ2I = -/12J 0.836

h 1111' h 2222 13.340
h l122 0.313
h 2121 • h 1212 14.090

hlJI 0.952 10- 6gmm
h2J2 0.952

Table 3. Material constants of a micropolar elastic
solid 3-D simple cubic structure

Stiffness Unit

A III I> A 2222• A JJJJ 45.103

A 1212. A IJIJ• A 2J2J 0.134 MPa
A 212 1> AJIJI> A J2J2

A 1122. A IIJJ. A 22JJ 0.0
A I22 1> AIJJI> A2JJ2

Bill I> B 2222• B JJJJ 0.0219

B 1212• B IJIJ• B 2J2J 0.1143 MPamm2

B 212 1> BJIJI> B J2J2

B 1122• B IIJJ• B 22JJ 0.0
B I22 1> BIJJI> B 2JJ2

Inertia

p 16.45 IO- J gcm- J

b l I> b22• bJJ 0.1420

eJ12= -e21J

el2J = -eJ21 1.10
e2J1 = -e1J2

121J = -/JI2

IJ2I = -1m 0.302 10-6 gmm -1
1m = -1m

h lili • h2222• h JJJJ 4.680

h 1212• h IJIJ• h2J2J 5.219
h 2121 • hJIJI> h J2J2

h 1122• h IlJJ• h 22JJ 0.0
h l22 1> hlJJI> h 2JJ2

jllll>h222.jJJ)J 0.0059

jl2l2.jl J IJ.hJ2J 0.3435 10- 6gmm
hl2l>jJIJI.jJ2J2

j'122' j II J).j22JJ 0.0
jl221>jIJJI>j2JJ2
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Table 4. Comparison between characteristic lengths (unit '= rom)

Microstructure L L.

2-D Rectangle
2-D Triangle
3-D Simple cube

1.6
1.6
1.6

0.05
0.058
0.05

0.10
0.11
0.093

0.737
0.681
0.563

7.37
6.14
6.06

materials considered, the effect of non-classical terms Bjjkl in stiffness is very small. Therefore,
in static problems, the effect of microstructures (i.e. deviation from classical continua) is
restricted to very narrow boundary zones (Kim, 1984). The ratios Lb/L are also very small.
However, Lh and L are of the same order of magnitude and Lh is about six times larger
than Lb' Therefore, the effect of beam-microstructure will be the greatest in dynamic
problems due to the fourth-order terms hjjkl when the wavelength becomes the same order
of magnitude as L h • This is investigated in the following section.

FREE VIBRATION OF BODIES WITH PERIODIC BEAM STRUCTURES

To see the effect of the high order terms, hjjk1 , etc. on the dynamic behavior of
periodic beam structured bodies, modal analyses ofboth micropolar continuum models and
equivalent classical continuum models are performed.

This classical continuum was defined from the micropolar continuum using asymptotic
expansions and it was shown that the solution of classical elasticity is the outer solution of
the perturbation analysis ofmicropolar elasticity (Kim, 1984). The material constants, C;jkl'

of classical continuum can be derived directly from the material constants A jjkl of the
corresponding micropolar continuum.

Since it is very difficult to derive analytic solutions ofvibration problems of anisotropic
bodies due to the difficulty of satisfying boundary conditions, the finite element method is
used in the modal analyses. A finite element formulation of the elastodynamic problem of
micropolar continuum of the general form is presented in Kim (1984) and the difference
between the two micropolar continua is clearly described. These finite element formulations
are implemented by the computer program MICE (MICro Elasticity) described in Kim
(1984).

Example problems
Natural frequencies and mode shapes of the lowest modes of undamped free vibration

of the following bodies are calculated to compare the dynamic behavior of continuum
models with those of exact periodic beam structures:

(a) a 2-D square with square grid structure (Fig. 5);
(b) a 2-D hexagon with triangular grid structure (Fig. 6);
(c) a 3-D cube with cubic lattice (Fig. 7).

T

~,..

Fig. 5. A 2-D square with square grid microstructure.
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Fig. 6. A 2-D hexagon with triangular grid structure.

y

Fig. 7. A 3-D cube with cubic lattices.
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The material properties and the geometric values of a unit beam member in the bodies
are the same as the ones used in the calculation of material constants, except that the
diameter of a unit beam member in the 2-D hexagon is doubled. Therefore, the material
constants in Tables I and 3 are directly used in the analysis.

The beams in the 2-D bodies are confined to in-plane motion. Therefore, the flexural
vibrations of the body are not allowed. Exact solutions are obtained using beam elements
in the beam structural models and the maximum error is estimated to be less than 1.5%
for the modes calculated.

Results and discussions
The 12,9, and 12 modes of free vibration ofthe 2-D square, the 2-D hexagon, and the

3-D cube are calculated, respectively. They include the lowest to highest vibration modes.
The exact solution and all solutions from continuum models give the same corresponding
mode shapes for each mode. Therefore, the natural frequency for each mode can be
compared. They are compared in Tables 5-7. They show that the micropolar continuum of
the Eringen form has the highest natural frequency due to the lack of high order inertia
terms. The micropolar continuum of the general form gives very accurate solutions. The
classical continuum derived from the micropolar continuum also gives good results. This
shows that the optimum classical continuum should be derived from the micropolar con­
tinuum.

Since the number of microstructures in the bodies analyzed are not large, the effect of
boundary beams on natural frequencies is not small. To match the "full" beam boundary
condition, the continuum model was corrected by attaching "haIr' beams on the boundary
of continuum models.
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Table 5. Natural frequencies of face shear modes of the 2-D square body
(unit = I kHz)

Micropolar Micropolar
Mode No. Exact Classical (general form) (Eringen form)

I 3.769 3.997 4.012 4.083
2, 3 5.872 6.265 6.165 6.535

4 8.612 9.213 8.806 10.018
5 9.545 10.188 9.804 11.146

6, 7 12.533 13.498 12.356 15.449
8 15.859 17.262 14.939 20.831
9 16.512 18.055 15.504 21.639

10, II 19.844 21.943 17.670 27.582
12 23.016 25.151 19.517 33.174

Table 6. Natural frequencies of face shear modes of the 2-D hexagonal body
(unit = 10 kHz)

Micropolar Micropolar
Mode No. Exact Classical (general form' (Eringen form)

1,2 6.214 6.782 6.511 6.788
3,4 7.421 7.896 7.246 7.903

5 8.953 10.032 9.629 10.033
6 9.309 10.697 9.868 10.720
7 9.598 11.533 10.103 11.576

8,9 10.596 12.184 10.459 12.203

Table 7. Natural frequencies of the lowest modes of the 3-D cubic body (unit = I
kHz)

Micropolar Micropolar
Mode No. Exact Classical (general form) (Eringen form)

1,2 6.329 6.688 6.464 7.362
3,4,5 7.751 9.314 9.085 9.787

6 11.535 13.172 12.042 13.843
7,8,9 12.015 15.578 13.173 17.399

10, 11, 12 12.042 15.578 13.233 17.399

The errors in the natural frequencies of free vibration from modal analyses of con­
tinuum models and from modal analyses ofcorrected continuum models are plotted in Figs
8-10. The results show that the effect of the high order terms in the inertia property of the
micropolar continuum model is significant for the problem considered. The improvement
of the results with the correction of boundary conditions can also be seen in the figures.
The boundary effects are larger for lower modes since the wavelengths of the low modes
are comparable to the body lengths of the beam structured materials. For higher modes
the wavelengths ofvibration become smaller than the body length. Therefore, the boundary
effect is reduced and the effect of the material properties, especially the high order inertia
terms, become significant.

CONCLUSIONS

Periodic beam structures must be classified by their discrete models to define an
adequate continuum model. For a periodic beam structure of the single-atom type, the
micropolar continuum of the general form, defined in this study, is the adequatecontil1UUDl
model. Stress and couple stress defined in the micropolar continuum model of periodic
beam structures of the single-atom type have definite relationships with forcesandmoments
acting on neighbor joints of a unit structure. Therefore, the stresses and cou.ple stresses at
a point in a continuum model of a beam-structured material should be interpreted with the
microstructure in mind.
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Fig. 9. Errors of natural frequencies ofcontinuum models compared with exact solutions for the 2­
D hexagon: \7--------, classical; 6--'--, micropolar (Eringen); 0--·--, micro­
polar (general); .... • micropolar (Eringen)+ boundary beams; • , micropolar
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1576 K. S. KIM and R. L. PIZIALI

30 't---V

25

20

15

10
Error

(%)

5

0

·5

6 7 10
(8) (1)

(~> 02>

Mode Number
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Besides the mass density p and the micro-rotational inertia term bij higher order terms
appear in the inertia property of the continuum model of a beam-structured material. The
effect of these high order terms on the elastodynamic behavior of beam-structured materials
is significant.
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APPENDIX: ENERGY FUNCTIONS

Strain energy function
Consider a beam pair which is a system of two equal beams connected at joint I as shown in Fig. I. The

strain energy stored in this beam pair can be expressed as follows using local coordinate variables:

where

S.E. = ~l:~lT[~~:l ~~:l
U2' [k2ol [Ol

(AI)

[kooll = [k ll l/+[k 22l,

[kOllt = [k2ol, = [k 12l1

[ko2ll = [klOl, = [k 2dl = [kdl
[klill = [k 22l,
[kn], = [kill,

[kill" [ku]" [knl/' and [k 21]1 form the stiffness matrix ofa beam element and {u,} is the displacement vector of
joint i.

The first-order Taylor series expansions for {ul},and {U2}' about joint 0 are

o
{utJ, = {uoh+L ox {uo},

o
{Ud2 = {uo}/-L ox {uo},

where L is the length of a beam.
Inserting eqns (A2) into eqn (AI) and after rearrangement, the strain energy becomes

Inserting the detailed expression of submatrices into eqn (A3) simplifies the strain energy expression

(A2)

(A3)

12EI. (ov V 12Ely (ow V EA(OUV GJ(OPV
S.E. = L)(I +4'y) ox -R), + L)(I +4'.) ox +Q), + L ox), + L ox)'

+ (4+4'.)EI, (OQV + (4+4'y)EI. (ORV (A4)
L(I +4'.) ox)' L(I +4'y) ox)'

where (u, v, w) are the components of the translational displacement vector in local coordinates, (P, Q, R) the
components of rotation about the X-, y-, and z-axes, E is Young's modulus of the beam, G the shear modulus of
the beam, A the area of the beam cross section, J the polar moment of inertia of the beam cross section, I , I. the
second moments of inertia of the beam cross section about the y- and z-axis ' .
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<1>, = (12£1,)/(k,GA L,)

<1>, = (l2£1,)/(k y GAL,)

and ky' k, the shear coefficients of the beam cross section
Using the strain measures defined in eqns (6) and (7), the strain energy stored in a beam pair can be expressed

as follows:

. _ . 12£1, ., 12£1" , £A , GJ , (4+<IJ,)£I, 1 (4+<1>,)£1,
S.E. - L.>(I-+li>~ (I.,,), + D[C+<I>J (r.'l)/ + -{ (I:, Il/ + -i (YII)/ + -i{(+<I>;j' (Y2')/ + -L(f+<Il~) (YJI)i.

(A5)

The special characteristic of this expression is that there is no coupling term between the strain and the
gradient of rotation.

If n pairs of beams are connected to joint 0, the strain energy stored in each pair of beams is expressed by
eqn (A5) in each local coordinate. These strain energies can be summed when the strain measures in eqn (A5) are
expressed in global coordinates by a coordinate transformation matrix, [A,J. as follows:

(Cu)' = A.. J.j/(CA/)G

(Yu), = J...AjI(Yk/)G'
(A6)

The strain energy function of the periodic structure is obtained when the sum of strain energies is divided by
the volume of a unit cell. The strain energy function is the sum of a quadratic function of ei) and a quadratic
function of Yij' and can be expressed using two fourth-order tensors as in eqn (8).

Kinetic energy function
After a similar procedure, the kinetic energy of a pair of beams, shown in Fig. I, is expressed as follows:

(A7)

in local coordinate variables.
The kinetic energy expression, eqn (A7), can be expressed in terms of variables in global coordinates after a

coordinate transformation of the velocity components and their first derivatives. If n pairs of beams are connected
to joint 0, all the kinetic energies can be summed in global coordinates. Then, the kinetic energy function, which
is a function of velocity, angular velocity, and their gradients, is obtained after dividing by the volume of the unit
cell

( . . ou, ocP')
Y= Y Ui,qJi, ox/ ox} (A8)

where ui are the velocity components in global coordinates and cPi the angular velocity components in global
coordinates.

One special characteristic of eqn (A7) is that there is no coupling term between velocity and angular velocity,
between gradient of velocity and gradient of angular velocity, between velocity and gradient of velocity, and
between angular velocity and gradient of angular velocity. Therefore, the kinetic energy function is simplified by
these conditions (11).


